In vitro hypoxia impairs beta2-adrenergic receptor signaling in primary rat alveolar epithelial cells.
نویسندگان
چکیده
Hypoxia inhibits beta(2)-adrenergic receptor (beta(2)-AR) signaling in a variety of tissues, but effects in alveolar epithelium are unclear. We therefore examined the effect of 24 h of hypoxia on beta(2)-AR function in primary rat alveolar epithelial [alveolar type II (ATII)] cells. ATII cells were isolated, cultured to confluence, and incubated in normoxia or hypoxia (3% O(2)) for 24 h. Hypoxia decreased maximal terbutaline-stimulated cAMP production by 37%; potency of terbutaline was not affected. Reoxygenation (3 h) reversed this effect. Density of beta(2)-AR assessed by (-)-[(125)I]iodocyanopindolol binding was decreased in hypoxia (-22%). Hypoxia did not affect terbutaline binding affinity to beta(2)-AR. Hypoxia decreased G(s) protein levels by 27%, whereas no change was observed in G(i1/2), G(i3), and Gbeta subunits. Forskolin-stimulated cAMP production was not inhibited by hypoxia. Pertussis toxin (PTX; 0.5 microg/ml, 2 h), an inhibitor of G(i/o) proteins, restored terbutaline-stimulated cAMP production of hypoxic ATII cells to normoxic control values. Cholera toxin (CTX)-stimulated G(s) protein activity did not change in hypoxia. Hypoxia increased the sensitivity of beta(2)-AR to desensitization. These results indicate that despite the decrease in G(s) protein level G(s) protein was still functional and that hypoxia impairs beta(2)-AR signaling due to an increased activity of G(i/o) proteins.
منابع مشابه
In vitro hypoxia impairs 2-adrenergic receptor signaling in primary rat alveolar epithelial cells
Baloğlu E, Ke A, Abu-Taha IH, Bärtsch P, Mairbäurl H. In vitro hypoxia impairs 2-adrenergic receptor signaling in primary rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 296: L500 –L509, 2009. First published December 19, 2008; doi:10.1152/ajplung.90390.2008.—Hypoxia inhibits 2-adrenergic receptor ( 2-AR) signaling in a variety of tissues, but effects in alveolar epithelium ar...
متن کاملSustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملHypoxia-reoxygenation induced necroptosis in cultured rat renal tubular epithelial cell line
Objective(s): The aim of this study is to explore the potential role of hypoxia/reoxygenation in necroptosis in cultured rat renal tubular epithelial cell line NRK-52E, and further to investigate its possible mechanisms.Materials and Methods: Cells were cultured under different hypoxia-reoxygenation conditions in vitro. MTT assay was used to measure the cell proliferation...
متن کاملHypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1.
Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of alpha-smooth muscle actin (alpha-SMA) an...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 296 3 شماره
صفحات -
تاریخ انتشار 2009